

THE UNIVERSITY COLLEGE OF THE CARIBOO

COMPUTING 253

Small Computer Systems: Organisation and Architecture

Take Home Review – Numeric Representation "Fixed and Floating—What's the Point?"

For completeness, show your work wherever possible.

1. Using the <u>direct method</u> of calculating the decimal form of any 2's complement number (whether the number is positive or negative).

Direct method:

- let the msb (sign bit) have a data value of $-(2^{(n-1)})_{10}$; n is the integer word size (to the left of point)
- add the unit values of the remaining bits to the first number (which is either zero, or a large negative)
- since the msb unit value is larger than all other bits put together, if the msb = 1 the outcome is negative, if msb = 0 the outcome is positive
- note: this method does perform any strange "flip & add 1" techniques

Use this technique to determine the values of the binary fixed-point numbers below,

using 8-bit word, 2's complement,

a) $0000 \ 0011_2 = ?_{10}$ b) $1000 \ 0011_2 = ?_{10}$

using 8-bit word, 2's complement, 3-bit precision,

c) $00010.101_2 = ?_{10}$ d) $10010.101_2 = ?_{10}$

- 2. Convert and calculate the following with fixed-point on an 8-bit word and 4-bit precision (all-positive),
 - a) What is the *largest value* that can be stored? (Answer in <u>binary</u> and <u>decimal</u>.)

b) $10.50_{10} = ?_2$ d) $1010.1010_2 = ?_{10}$ c) $6.0625_{10} = ?_2$ e) $82_{16} = ?_{10}$

- 3. Convert and calculate the following in fixed-point form with: 8-bit word, 2's complement, and 3-bit precision,
 - a) What are the *largest positive* and *largest negative* values? (Answer in <u>binary</u> and <u>decimal</u>.)
 - b) $-10.50_{10} = ?_2$ c) $13.375_{10} = ?_2$ d) $-13.375_{10} = ?_2$ e) $10101.010_2 = ?_{10}$ f) $A2_{16} = ?_{10}$
 - f) in binary, calculate the result of the value in c) the value in e)

4. Express the following decimal values in *floating-point* form with: 16-bit word, 7-bit exponent, and 8-bit mantissa,

a) 0.0_{10} b) 1.0_{10} c) -0.5_{10} d) -5.62_{10} e) $1/64_{10}$

- 5. Express the following floating-point numbers in decimal (_____10). (use floating-point structure as in question 4.)
 - a) 0|000 0000|1000 0000 b) 0|000 0010|1111 0000 c) 1|111 1111|1010 0000 d) 1|000 0000|1001 0100 e) 0|111 1111|100 0000
 - f) What is the *largest number* and *smallest number* that can be stored in this FP format?
- 6. The following floating-point numbers are invalid, and consider NaN ("not-a-number") in floating-point representation. Indicate why.
 - a) 0|000 0010|0101 0100
 b) 1|000 0000|0000 0000
 c) 0|000 0100|0000 0100
 d) 1|100 0000|0000 0001