THE UNIVERSITY COLLEGE
OF THE CARIBOO

COMPUTING 253

N

A

Take Home Review — Numeric Representation
""Fixed and Floating—What's the Point?"'

1. Using the "true meaning of 2's complement" method,

using 8-bit word, 2’s complement,

a)

b)

0000 0011, = 24,
= —(27)*0 + 2t + 2% = -128*0 + 2 + 1 = 3y
1000 0011, = 24

= —(27)y*1 + 2 + 2% = -128*1 + 2 + 1 = -125y,

using 8-bit word, 2’s complement, 3-bit precision,

c)

d)

00010.101, = 249

= —@29*0 + 2+ 271+ 27%= -16%0 + 2 + 0.5 + 0.125 = 2.625,
10010.101, = 249

= —(2%*1 + 2+ 271+ 2% = -16*1 + 2 + 0.5 + 0.125 = -13.3754,

2. Convert and calculate the following with fixed-point on an 8-bit word and 4-bit precision (all-positive),

a) What is the largest number that can be stored? (Answer in binary and decimal.)

in binary:

1111.1111,

in decimal: 2°+22+2'+2° + 272 4272427%+271
= 8+44+2+1+0.5+0.254+40.12540.0625 = 15.9375;,
b) 10.5010:?2

A) 10 / 2 =5 + rem O 0 (1ls)

5/ 2 =2+ rem 1 1

2/ 2 =1+ rem 0 0

1/ 2=0+ rem 1 1 (ms) 10, = 1010,
B) .50 * 2 = 1.0 1 (ms)/(1ls)

.0 * 2 =20.0 0.5 = .1,
C) 10.5010 = 1010.10002

C) 6.06251():?2

A) 6 / 2 =3+ rem O 0 (1ls)

3/ 2=1H+%reml1 1

1/ 2=0+ rem 1 1 (ms) 710 = 0110,
B) .0625 * 2 = 0.125 0 (ms)

.125 * 2 = 0.25 0

25 * 2 = .50 0

50 * 2 =1.0 1 (1ls)

0 *2 -=20.0 0.0625,5 = .0001,
C) 7.0625;, = 0110.0001,

Take Home Review — Numeric Representation — Solutions — 1

d) 101010102:?10
(straight): 2°+2' + 274273 = 8+2+.50+.125 = 10.6254,

) 8215="
keeping in mind that hexadecimal is a short-cut/compressed form of binary,

8 216
1000 0010 => 1000.0010, (based on 8-bit word, 4-bit prec, all pos.)

1000.0010, = 2% + 27° = 8+.125 = 8.125,

3. Convert and calculate the following with fixed-point on an 8-bit word, 2's complement, and 3-bit precision,

a) What are the largest positive and largest negative numbers? (Answer in binary and decimal.)

largest positive:
in binary: 01111.111,
in decimal: 2°+2742'+42% + 27142724273
= 8+4+4+2+1+0.5+0.25+0.125 = 15.875,

largest negative:

in binary: 10000.000, (by rule of numeric cycle; largest positive + .001)
in decimal: (using method in #9) - (2% = -16.04,

b) -10.5010 = ?2
(from above: 10.50,0 = 01010.100,)

-10.504 ¢ 1. flip: 10101.011

2. add 1:+ .001
10101.100,
c) 13.37510=7,
A) 13/ 2 =6 + rem 1 1 (1ls)
6 /2 =34+ rem 0 : 0
3/ 2=1H+%reml1 1
1/ 2=0+ rem 1 1 (ms) : 13,0 = 01101,
B) .375 * 2 = 0.75 0 (ms)
.75 * 2 = 1.5 1
.50 * 2 =1.0 1 (1ls)
.0 * 2 =0.0 : 0.37510 = . 112

C) 13.375, = 01101.011,

d) -13.375,0=",
(from previous: 13.375;0 = 01101.011,)
-13.375; : 1. flip: 10010.100

2. add 1:+ .001
10010.101,

e) 101010102:710
(straight): —(2%)+2%242°% + 272 = -16+4+1+.25 = -10.75;,

(long method): 1. flip: 01010.101

2. add 1:+ .001
01010.110, = 2%+2' + 271427 = 842+.5+.25 = 10.75q,
and the number is originally negative, so = -10.75;,

Take Home Review — Numeric Representation — Solutions — 2

) A2i6="1
keeping in mind that hexadecimal is a short-cut/compressed form

(representation) of binary,

= A 216
1010 0010 => 10100.010, (based 8-bit word, 3-bit precision)

10100.010, = —(2%9)+42% + 272 = -16+4 +.25 = —-11.75;,

g) in binary, calculate the result of the value in c) — the value in e)

13.375;0=> 01101.011 - 10101.010, = 2,

Knowing the subtraction is performed by "adding a negative," the second
value must be negated, yet this number is already negative =» this implies
that the second value becomes positive.

Therefore,
01101.011 - 10101.010,

01101.011 + (-10101.010),

= 01101.011 + 01010.110 ,

11000.001,

The result is a negative value instead of a positive because of overflow.

4. Express the following decimal values in floating-point form with a 16-bit word, 7-bit exponent, and 8-bit mantissa,

a) 0.010
A) O'OlO = 0.02
B) normalise: 0.0, = 0.0, * 2° (exponent = 0i,)
C) exponent: 0; = 0,
D) sign bit = 0 (positive), store: 0 0000000 00000000
or just conclude: no sign bit, no exponent, no mantissa = 0 0000000 00000000

(zero is a special floating-point value that is commonly just stored as: 0)

A) 1.0 = 1.0,

B) normalise: 1.0, = 0.1, * 2! (exponent = 1)

C) exponent: 1,, = 0000001,

D) sign bit = 0 (positive), store: 0 0000001 10000000

) 0.5 = 0.1,

B) normalise: 0.1, = 0.1, * 2° (exponent = 019)

C) exponent: 0;, = 0000000,

D) sign bit = 1 (negative), store: 1 0000000 10000000

d) -5.62
A) 5.62;p = 101.1001111101, (10 bits precision is good enough!)
B) normalise: 101.1001111101, = .1011001111101, * 2° (exponent = 31g)

C) exponent: 3;, = 0000011,
D) sign bit = 1 (negative), store: 1 0000011 10110011
(the stored floating-point value suffers from underflow.)

Take Home Review — Numeric Representation — Solutions — 3

A) 1/64 = 27° = 0.000001,

) normalise: 0.000001, = 0.1, * 27° (exponent = -5;9)

) exponent: -5, = (5, = 0000101,; -5, = 1111011,) = 1111011
) sign bit = 0 (positive), store: 0 1111011 10000000

Express the following floating-point numbers in decimal (__ ;o), 16-bit word, 7-bit exponent, and 8-bit mantissa,

a) 01000 0000]1000 0O0OQO

A) sign bit: 0 - positive
) exponent: 000 0000, = Oi9
) mantissa: .1, * 2° = .1,
) decimal : (271 = 0.5y

b) 01000 0010|1111 0000
A) sign bit: 0 - positive
) exponent: 000 0010, = 29
) mantissa: .1111, * 22 = 11.11,
) decimal : (2'+2%27%427%) = 3.75;,

c) 1111 1111]1010 00O0O
A) sign bit: 1 - negative

B) exponent: 111 1111, = -1
C) mantissa: .101, * 27' = .0101,
D) decimal : —(27%427%) = -0.3125;,

d) 11000 000011001 0100
A) sign bit: 1 - negative

B) exponent: 000 0000, = 049
C) mantissa: .100101, * 2° = .100101,
D) decimal : —(27'+27%+27%) = -0.578125,,

e) 0111 1111]1100 0000
A) sign bit: 0 - positive

B) exponent: 111 1111, = -1
C) mantissa: .11, * 27t = .011,
D) decimal : (27%+27°) = 0.3754,

f) What is the largest number and smallest number that can be stored in this FP format?
largest
A) sign bit: 0 or 1 (irrelevant when referring only to magnitude or prec.)
B) exponent: 011 1111, = 634
C) mantissa: .11111111, * 2°°
D)

decimal : left for discussion
smallest
A) sign bit: 0 or 1 (irrelevant when referring only to magnitude or prec.)
B) exponent: 100 0000, = —-64,,
C) mantissa: .1, * 27%
D) decimal : left for discussion

Take Home Review — Numeric Representation — Solutions — 4

The following floating-point numbers are invalid. Indicate why.

a) 01000 001010101 0100
— mantissa does not begin with 0.1; indicating the mantissa was not
normalised correctly, or an error occurred in storing the bits

b) 11000 0000|0000 000O
- exponent and mantissa describe zero, but sign bit indicates a
negative; negative zero is not a valid FP number.

c) 01000 010010000 0100
- same problem as a), mantissa is invalid.

d) 11100 000010000 0001
- same problem as a) and c), mantissa is invalid
(note: this FP number does not represent the smallest number; although
the exponent 1s the most negative value possible exponent and the
mantissa seems the smallest value, the mantissa 1is not normalised and
the FP is invalid)

Take Home Review — Numeric Representation — Solutions — 5

