
 Take Home Review – Numeric Representation – Solutions – 1

Take Home Review – Numeric Representation
"Fixed and Floating—What's the Point?"

1. Using the "true meaning of 2's complement" method,

using 8-bit word, 2’s complement,

a) 0000 00112 = ?10

 = -(27)*0 + 21 + 20 = -128*0 + 2 + 1 = 310

b) 1000 00112 = ?10

 = -(27)*1 + 21 + 20 = -128*1 + 2 + 1 = -12510

using 8-bit word, 2’s complement, 3-bit precision,

c) 00010.1012 = ?10

 = -(24)*0 + 21 + 2-1 + 2-3 = -16*0 + 2 + 0.5 + 0.125 = 2.62510

d) 10010.1012 = ?10

 = -(24)*1 + 21 + 2-1 + 2-2 = -16*1 + 2 + 0.5 + 0.125 = -13.37510

2. Convert and calculate the following with fixed-point on an 8-bit word and 4-bit precision (all-positive),

a) What is the largest number that can be stored? (Answer in binary and decimal.)

 in binary: 1111.11112
 in decimal: 23+22+21+20 + 2-1+2-2+2-3+2-4

 = 8+4+2+1+0.5+0.25+0.125+0.0625 = 15.937510

b) 10.5010 = ?2

 A) 10 / 2 = 5 + rem 0 : 0 (ls)
 5 / 2 = 2 + rem 1 : 1
 2 / 2 = 1 + rem 0 : 0
 1 / 2 = 0 + rem 1 : 1 (ms) : 1010 = 10102

 B) .50 * 2 = 1.0 : 1 (ms)/(ls)
 .0 * 2 = 0.0 : 0.510 = .12

 C) 10.5010 = 1010.10002

c) 6.062510 = ?2

 A) 6 / 2 = 3 + rem 0 : 0 (ls)
 3 / 2 = 1 + rem 1 : 1
 1 / 2 = 0 + rem 1 : 1 (ms) : 710 = 01102

 B) .0625 * 2 = 0.125 : 0 (ms)
 .125 * 2 = 0.25 : 0
 .25 * 2 = .50 : 0
 .50 * 2 = 1.0 : 1 (ls)
 .0 * 2 -= 0.0 : 0.062510 = .00012

 C) 7.062510 = 0110.00012

THE UNIVERSITY COLLEGE
OF THE CARIBOO
COMPUTING 253

 Take Home Review – Numeric Representation – Solutions – 2

d) 1010.10102 = ?10

 (straight): 23+21 + 2-1+2-3 = 8+2+.50+.125 = 10.62510

f) 8216 = ?10

 keeping in mind that hexadecimal is a short-cut/compressed form of binary,
 = 8 216
 = 1000 0010 => 1000.00102 (based on 8-bit word, 4-bit prec, all pos.)

 1000.00102 = 2

3 + 2-3 = 8+.125 = 8.12510

3. Convert and calculate the following with fixed-point on an 8-bit word, 2's complement, and 3-bit precision,

a) What are the largest positive and largest negative numbers? (Answer in binary and decimal.)

 largest positive:
 in binary: 01111.1112
 in decimal: 23+22+21+20 + 2-1+2-2+2-3

 = 8+4+2+1+0.5+0.25+0.125 = 15.87510

 largest negative:
 in binary: 10000.0002 (by rule of numeric cycle; largest positive + .001)

 in decimal: (using method in #9) -(24) = -16.010

b) -10.5010 = ?2

 (from above: 10.5010 = 01010.1002)

 -10.5010 : 1. flip: 10101.011
 2. add 1:+ .001
 10101.1002

c) 13.37510 = ?2

 A) 13 / 2 = 6 + rem 1 : 1 (ls)
 6 / 2 = 3 + rem 0 : 0
 3 / 2 = 1 + rem 1 : 1
 1 / 2 = 0 + rem 1 : 1 (ms) : 1310 = 011012

 B) .375 * 2 = 0.75 : 0 (ms)
 .75 * 2 = 1.5 : 1
 .50 * 2 = 1.0 : 1 (ls)
 .0 * 2 = 0.0 : 0.37510 = .0112

 C) 13.37510 = 01101.0112

d) -13.37510 = ?2

 (from previous: 13.37510 = 01101.0112)

 -13.37510 : 1. flip: 10010.100
 2. add 1:+ .001
 10010.1012

e) 10101.0102 = ?10

 (straight): -(24)+22+20 + 2-2 = -16+4+1+.25 = -10.7510

 (long method): 1. flip: 01010.101
 2. add 1:+ .001
 01010.1102 = 2

3+21 + 2-1+2-3 = 8+2+.5+.25 = 10.7510
 and the number is originally negative, so = -10.7510

 Take Home Review – Numeric Representation – Solutions – 3

f) A216 = ?10

keeping in mind that hexadecimal is a short-cut/compressed form
(representation) of binary,

 = A 216
 = 1010 0010 => 10100.0102 (based 8-bit word, 3-bit precision)

 10100.0102 = -(2

4)+22 + 2-2 = -16+4 +.25 = -11.7510

g) in binary, calculate the result of the value in c) – the value in e)

 13.37510 => 01101.011 - 10101.0102 = ?2

Knowing the subtraction is performed by "adding a negative," the second
value must be negated, yet this number is already negative � this implies
that the second value becomes positive.

Therefore,
 01101.011 - 10101.0102 = 01101.011 + (-10101.010)2
 = 01101.011 + 01010.110 2
 = 11000.0012
The result is a negative value instead of a positive because of overflow.

4. Express the following decimal values in floating-point form with a 16-bit word, 7-bit exponent, and 8-bit mantissa,

a) 0.010

 A) 0.010 = 0.02
 B) normalise: 0.02 = 0.02 * 2

0 (exponent = 010)
 C) exponent: 010 = 02
 D) sign bit = 0 (positive), store: 0 0000000 00000000

or just conclude: no sign bit, no exponent, no mantissa = 0 0000000 00000000
(zero is a special floating-point value that is commonly just stored as: 0)

b) 1.010

 A) 1.010 = 1.02
 B) normalise: 1.02 = 0.12 * 2

1 (exponent = 110)
 C) exponent: 110 = 00000012
 D) sign bit = 0 (positive), store: 0 0000001 10000000

c) -0.510

 A) 0.510 = 0.12
 B) normalise: 0.12 = 0.12 * 2

0 (exponent = 010)
 C) exponent: 010 = 00000002
 D) sign bit = 1 (negative), store: 1 0000000 10000000

d) -5.6210

 A) 5.6210 = 101.10011111012 (10 bits precision is good enough!)
 B) normalise: 101.10011111012 = .10110011111012 * 2

3 (exponent = 310)
 C) exponent: 310 = 00000112
 D) sign bit = 1 (negative), store: 1 0000011 10110011
 (the stored floating-point value suffers from underflow.)

 Take Home Review – Numeric Representation – Solutions – 4

e) 1/64 10

 A) 1/64 = 2-6 = 0.0000012
 B) normalise: 0.0000012 = 0.12 * 2

-5 (exponent = -510)
 C) exponent: -510 = (510 = 00001012; -510 = 11110112) = 1111011
 D) sign bit = 0 (positive), store: 0 1111011 10000000

5. Express the following floating-point numbers in decimal (__ 10), 16-bit word, 7-bit exponent, and 8-bit mantissa,

 a) 0|000 0000|1000 0000
 A) sign bit: 0 - positive
 B) exponent: 000 00002 = 010
 C) mantissa: .12 * 2

0 = .12
 D) decimal : (2-1) = 0.510

 b) 0|000 0010|1111 0000
 A) sign bit: 0 - positive
 B) exponent: 000 00102 = 210
 C) mantissa: .11112 * 2

2 = 11.112
 D) decimal : (21+20+2-1+2-2) = 3.7510

 c) 1|111 1111|1010 0000
 A) sign bit: 1 - negative
 B) exponent: 111 11112 = -110
 C) mantissa: .1012 * 2

-1 = .01012
 D) decimal : -(2-2+2-4) = -0.312510

 d) 1|000 0000|1001 0100
 A) sign bit: 1 - negative
 B) exponent: 000 00002 = 010
 C) mantissa: .1001012 * 2

0 = .1001012
 D) decimal : -(2-1+2-4+2-6) = -0.57812510

e) 0|111 1111|1100 0000

 A) sign bit: 0 - positive
 B) exponent: 111 11112 = -110
 C) mantissa: .112 * 2

-1 = .0112
 D) decimal : (2-2+2-3) = 0.37510

f) What is the largest number and smallest number that can be stored in this FP format?
 largest
 A) sign bit: 0 or 1 (irrelevant when referring only to magnitude or prec.)
 B) exponent: 011 11112 = 6310
 C) mantissa: .111111112 * 2

63
 D) decimal : left for discussion

 smallest
 A) sign bit: 0 or 1 (irrelevant when referring only to magnitude or prec.)
 B) exponent: 100 00002 = -6410
 C) mantissa: .12 * 2

-64
 D) decimal : left for discussion

 Take Home Review – Numeric Representation – Solutions – 5

6. The following floating-point numbers are invalid. Indicate why.

 a) 0|000 0010|0101 0100
- mantissa does not begin with 0.1; indicating the mantissa was not
normalised correctly, or an error occurred in storing the bits

b) 1|000 0000|0000 0000
- exponent and mantissa describe zero, but sign bit indicates a
negative; negative zero is not a valid FP number.

c) 0|000 0100|0000 0100

- same problem as a), mantissa is invalid.

d) 1|100 0000|0000 0001
- same problem as a) and c), mantissa is invalid
(note: this FP number does not represent the smallest number; although
the exponent is the most negative value possible exponent and the
mantissa seems the smallest value, the mantissa is not normalised and
the FP is invalid)

