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COMP253 — Lecture 2: Number Systems 
(For reference books, see: Number Representation Book List on the COMP253 webpage.) 

Number Systems 
Modern humans are familiar using the decimal number system, or base 10.  The numeric symbols that form the 

decimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, commonly referred to as "digits." 

Why 10 numbers? 

 

If we could somehow get the computer to internally store values in base 10, a lot of programming hassle would be 

eliminated.  But this is not going to happen in the near future (someday perhaps) because of the physics of how 

computers work. 

Internally, computers use the binary number system, or base 2.  The numeric symbols that form the binary number 

system are 0 and 1, commonly referred to as "bits" (binary digits). 

Why 2 numbers? 

 

As a note of interest, the ancient Mayan, Egyptian, and Incan civilisations also used base 10 number systems (but 

with different symbols than the common Arabic used today.  In contrast, the ancient Babylonians used a number 

system that had 60 digits (sexagesimal), and the Greeks described a unique number system based on their alphabet.  

The Romans used the Greek numbering techniques, and devised a simplified (less symbols) method, known today as 

"roman numerals." 

The Binary System 

Even though binary only has two numbers (0 and 1), it can still represent every number that is possible in decimal. 

Example, 

510 = 1012  2710 = 110112 
 

But before continuing with the mathematical aspects, observe the differences between the numeric symbols for each 

system, and the length of each number.  (Also note the subscript number that indicates the base.) 

Decimal makes sense for us (or at least it should), but how does binary work? 

Consider how numbers in decimal are sequenced, 

0->9, 10->19, 20->29, ... 
     ...,100->109, 110->119, 120->129, ... 
 

And now in binary, 

0,1, 10,11, 100,101, 110,111, ... 
 

To understand how both number systems progress, look at how numbers are valued in decimal, 

34210 = 3*102 + 4*101 + 2*100         1102 = 1*22 + 1*21 + 0*20 
     = 300 + 40 + 2                      = 4 + 2 + 0 
     = 34210                              = 610 

 
The value of a binary number is defined in the same manner as decimal with a base (of 2) raised to a specific power. 

decimal: __  __  __  __  __  __  __  __ binary: __  __  __  __  __  __  __  __ 
         107 106 105 104 103 102 101 100             27  26  25  24  23  22  21  20 
 
Using the ideas just presented, try the following, 

 
12 =  ? 10 1112 =  ? 10  10112 =  ? 10 810 =  ? 2 610 =  ? 2 3310 =  ? 2 
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Conversion From Decimal to Binary 
You have already seen how to convert from binary to decimal in the previous lecture.  Now the focus is placed on 

converting from decimal to binary. 

Method 1: Subtraction 

- subtract the highest possible bit-position value from the current decimal value. 

ex: 

  8910 = ?2                        128 > 89  -> 7-bit = 0   msb 
                                  89 – 64 = 25 -> 6-bit = 1 
   27  26  25  24  23  22  21  20    32 > 25    -> 5-bit = 0 
= 128 64  32  16  8   4   2   1     25 – 16 = 9 -> 4-bit = 1 
                                  9 – 8 = 1  -> 3-bit = 1 
       msb      lsb               4 > 1   -> 2-bit = 0 
=> 8910 = 010110012                 2 > 1   -> 1-bit = 0 
                                  1 – 1 = 0  -> 0-bit = 1   lsb 
                                        (stop) 
 
This technique is not very efficient since the value of the 2x bit-position value must be remembered, yet it makes 

more sense than the division method for most people. 

Method 2: Division 

ex:   8910 = ?2 

  89 / 2 = 44.5 (44 + remainder 1) : 1   lsb 
  44 / 2 = 22   (22 + remainder 0) : 0 
  22 / 2 = 11 + remainder 0        : 0 
  11 / 2 = 5 + remainder 1         : 1 
   5 / 2 = 2 + remainder 1         : 1 
   2 / 2 = 1 + remainder 0         : 0 
   1 / 2 = 0 + remainder 1         : 1   msb 
         (stop) 
 
       msb      lsb 
=> 8910 = 010110012 
 
The division technique is much faster than subtraction and there is no need to memorise the 2x bit-position values. 
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Hexadecimal and Octal (see Appendix D in the textbook) 

As much as binary describes the fundamental number system for the computer, it is cumbersome for humans to 

work with.  Hardware and software designers needed something with the quality of binary, but was more familiar 

and less bulky (they wanted to design and code in binary, but without using 0's and 1's). 

Hence, the introduction of the hexadecimal (base 16) and octal (base 8) numbers systems.  In the following 

discussion, consider hex and octal as compressed binary. 

Hexadecimal (Hex) 
Base 16 (24).  Numeric symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (10), B (11), C(12), D(13), E(14), F(15) 

ex: 

   2710 = 1b16   510 = 516   24410 = F416 
 
Numeric values:   ex: 

                            F416 = F(15)*161  +  4*160   
   163  162  161  160            = 15*16  +  4*1 
= 4096 256  16   1             = 240 + 4 
                               = 24410 
 
Conversion  (decimal to hexadecimal) 

(Note: The Subtraction Method can be used, but it is quite difficult for hexadecimal.  The Division Method is far 

more practical.) 

ex:  8910 = ?16 

 
  89 / 16 = 5 9/16 (5 + remainder 9) : 9   ls 
   5 / 16 = 0 + remainder 5          : 5   ms 
         (stop) 
 
       ms  ls 
=> 8910 = 5916 
 

ex: 

  7510 = ?16 
 
  75 / 16 = 4 11/16 (4 + remainder 11) : B(11)   ls 
   4 / 16 = 0 + remainder 4            : 4       ms 
         (stop) 
 
       ms  ls 
=> 7510 = 4B16 

Octal 

Base 8 (24).  Numeric symbols: 0, 1, 2, 3, 4, 5, 6, 7 

ex: 

   2710 = 338   510 = 58   24410 = 3648 
 
Numeric values:   ex: 

                         3648 = 3*82 + 6*81  + 4*80   
    83  82  81  80            = 3*64 + 6*8 + 4*1 
 = 512 64  8   1            = 192 + 48 + 4 
                            = 24410 
 



4 

Conversion  (decimal to octal) 

(Note: As with hexadecimal, the Subtraction Method can be used, but it is quite difficult.) 

ex: 

  8910 = ?8 
 
  89 / 8 = 11 1/8 (11 + remainder 1) : 1   ls 
  11 / 8 =  1 + remainder 3          : 3 
   1 / 8 =  0 + remainder 1          : 1   ms 
         (stop) 
 
       ms   ls 
=> 8910 = 1318 
 

ex: 

  7510 = ?8 
 
  75 / 8 = 9 + remainder 3      : 3   ls 
   9 / 8 = 1 + remainder 1      : 1    
   1 / 8 = 0 + remainder 1      : 1   ms 
         (stop) 
 
       ms   ls 
=> 7510 = 1138 
 

Why use Hexadecimal and Octal? 
(Consult the Numeric Conversion Chart, available on COMP253 webpage) 

These number systems are convenient (easy to convert from Binary) when programming while being far less bulky 

than binary.  Essentially, hexadecimal and octal can represent binary numbers without having to deal with the large 

number of  0’s and 1’s . 

Consider the following, 

   8910 = 10110012 = 5916 = 1318 
 
and look at the respective Binary Tables, 

   Hex:      5       9    16 
   Bin: 0 0 1 0 1 1 0 0 1 2 
   Oct:   1     3     1   8 
 
A binary number can have its bits grouped so that the hexadecimal or octal number can be read directly. 

This also means that once a decimal number is converted to hexadecimal, octal, or binary, it can be quickly 

converted to the rest. 

ex:         /  416 = 01002  \ 
  7510 = 4B16  |               | 7510 = 0100 10112 
              \  B16 = 10112  / 
 
              /    18 = 0012   \ 
  7510 = 1138  |    18 = 0012    | 7510 = 001 001 0112 
              \   38 = 0112   / 
 
Beyond just quick conversions, hexadecimal and octal make life easy for lower-level language programmers 

(assembly and machine language) because the bits in memory make binary numbers, which are represented 

hexadecimal or octal numbers with no effort on the programmer’s part. 

(The above comment also applies to network programmers that must deal with flowing groups of bits.) 


