COMP253 — Lecture 4: Binary Math
The Purpose of Binary Math

So far, the computer-specific number systems of the computer have been discussed: binary, hexadecimal, and octal.  Of the three, binary is the most important since it is the true internal number system of the computer (CPU), whereas hexadecimal and octal are programmer conventions, or "short-cuts" for representing binary values.

Yet, how does the computer actually perform mathematical operations with a number system consisting of only two (2) digits: 0 and 1?  (keep in mind that the operations are 'tiny programs' performed by logic circuits.)

Also, along with the positive integers discussed to this point (in the conversion examples), there are other types of numbers, such as negatives and fractional values, that must be represented.  

(Note: Only binary math is discussed.  Math with hexadecimal and octal is beyond the scope of this course.  Further, this course treats hex and oct as representations of binary, not true values themselves, so the important topic is still binary math.  Higher-level courses discuss the fascinating topic of true base-x math.)

Binary Addition

Consider,


13210 + 8410 =  ? 10


 132







+ 84







----







 21610

We have learned the rules of "units addition" and how a "carry" works to accomplish addition of any sized decimal number.  Binary addition is accomplished in the same manner as decimal addition, with the following rules,

1. 0 + 0 = 0, carry 0
2. 0 + 1 = 1, carry 0
3. 1 + 0 = 1, carry 0
4. 1 + 1 = 0, carry 1
5. 1 + 1 + 1 = 1, carry 1
ex:  (fill in the necessary "carry" values)
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  10


 56

  111000


+1

+ 01


+47

+ 101111


--

 ---


---

--------


 310

  112


10310

 11001112
Binary Subtraction

Although binary subtraction works in the same manner as decimal subtraction, it is slightly confusing and cumbersome, and usually avoided.  CPUs are not programmed with the method of subtraction taught in elementary school, but with a more applicable method called "complement."  So, real binary subtraction is left to those who wish to research it on their own.

A note on "Word Size"

When writing decimal numbers, the main concern for accuracy is that each digit is in the correct "unit's position."  The x in 10x depends on how far to the left that unit is from the decimal point, or to the right for fractional units.  But an important note is that decimal numbers are usually unlimited in size and can have an infinite number of digits: the left-most unit is 10(, and right-most is 10-(.

But this is different with binary representation.  Although described as a true number system, our use for binary is to represent the nature of computer storage and processing, and computers are not unlimited—a computer stores and processes through circuitry—and circuitry is limited.

Unlike decimal values, binary numbers are constrained by a specific "word size," which simply denotes the number of bit positions available for a representation.  Common word sizes are byte, or octet, (8 bits), word (16-bits), double (32-bits), and quad (64-bits).

The limitation in word size maybe physical (such as CPU instruction size, or defining a negation; see below) or arbitrary because of an agreed standard (such as ASCII, or network communication).  Programming languages allow for multiple numeric datatypes of varying word sizes.  Languages such as VB, C++, Java, and COBOL predefine all types and allow for very little adjustment, whereas C, Assembly, and SQL provide a little flexibility in word sizes.

Yet in all cases there is a limit to the number of bit positions available for a representation—binary representation carries no meaning without a defined word size.

Negation Representation

In the decimal number system, a negative sign (-) placed at the beginning of the number indicates a negative value: 27 (positive 27) and -27 (negative 27).

In binary, a new symbol is not possible since only "0" and "1" exist (circuits do not have a "third state").  Therefore, a special bit must be used to indicate the sign of a number; obviously, it is called the sign bit.  This sign bit always occupies the highest unit-value bit of the word size (left-most bit).

For positive numbers the sign bit is zero (0), and for negative it is one (1). (The use of 0 as positive and 1 as negative is important and not a random decision; more on this later.)
ex:

01112 = 710 ;   10012 = -710   (4-bit word, using 2's complement) 
With a sign bit required to indicate positive or negative, attention must now be paid to the word size of the binary number.  Depending on the word size, a number may be negative…or it may not; consider,

ex:


      10012 = -710 : 4-bit word, 2's complement negation


  000010012 =  910 : 8-bit word, 2's complement negation

Forms of Negation Representation

There are three (3) forms of binary negation (note the sign bit in [ ]):

Sign magnitude (sign-mag.):  [1]1112 = -710
sign bit; the remaining bits always represent a positive number; used in floating-point (subsequent lecture)

1's complement (1's comp.):  [1]0002 = -710
sign bit; to switch from positive to negative: all the remaining bits are flipped (0 to 1, 1 to 0); easy to use for humans, but not efficient for binary math; not used much anymore

2's complement (2's comp.):  [1]0012 = -710
sign bit; to switch from positive to negative: all the remaining bits are flipped (0 to 1, 1 to 0) with an addition of 1 to the lsb; used almost exclusively because of processor effeciency use in binary math

2's Complement

(Note: When dealing with any form of mathematics in binary, a specific word-size must be set; otherwise all results are numerically undefined and problematic; therefore, always indicate the word size.  See example above for 4-bit and 8-bit word sizes.)

ex:  (for easier examples, a 4-bit word size is used; note: a 4-bit word is sometimes called a "nibble" or "nybble")

1. 510 = 01012
-510 = ?2


1. flip all bits: 0101 -> 1010


2. add 1:         1010 + 1 = 1011


 
  -510 = 10112
2. 310 = 00112
-310 = ?2

1. flip all bits: 0011 -> 1100



2. add 1:         1100 + 1 = 1101



  -310 = 11012
3. 1210 = 11002
-1210 = ?2
Take a moment to consider why 1210 can not be represented with a 4-bit word using 2's complement?

The following example uses an 8-bit word size with 2's complement

 2410 = 0001 10002
-2410 = ?2

1. flip all bits: 0001 1000 - > 1110 0111



2. add 1:         1110 0111 + 1 = 1110 1000



  -2410 = 1110 10002​​
Binary Addition and Subtraction with 2's Complement

(Note: 2's complement applies to positive as well as negative numbers.  It just happens that for positive numbers, the sign bit is zero and the remaining bits maintain their "positive" nature.)

The application of 2's complement makes addition and subtraction easy for the CPU (compared to sign-magnitude. and 1's complement.).  Assuming that only addition operations are possible, subtraction is accomplished by "adding a negative" value rather than actually subtracting it.

ex: (using an 8-bit word with 2's complement)


8 -  5   = 310   -->   8 + (-5) = 310
  810 = 0000 10002


0000 1000

 -510 = 1111 10112           + 1111 1011

                            -----------

                            1 0000 00112 = 310
Expected "Overflow"

Notice the importance of word size in the previous example.
The extra 1 at the beginning of the final answer is lost to "overflow" because of the word size limitation (8-bits).  During the operation, the processor knows that the word size is 8-bits and disregards anything that exceeds that size.

Although "overflow errors" are serious and cause extreme instability in programs, this is a case where the "overflow" is expected and not truly an error.

(Note: "Overflow" (too large; integers) and "underflow" (too small; fractionals) errors are discussed later.)

Exercises

Convert all values to binary, and perform all calculations in binary¸ then convert to decimal (show your work).

Assume all values are being stored with an 8-bit word size using 2's complement.

1. 16 + 210 = ___2 => ___10

2. 3 - 510 = ___2 => ___10
3. 6 - 610 = ___2 => ___10
4. 0000 1100 - 0010 10012 = ___2 => ___10
5. 09 - A116 = ___2 => ___10  (remember: hex is shortcut for binary; is there a problem?)
6. What are the largest possible positive and largest possible negative binary values for this word size?
Show your answers in binary and decimal.
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