COMP253 — Lecture 5: Word Sizes and Ranges

Ranges

At this point it should be clear that the binary number system can represent any whole-number (integer) value possible by the decimal number system, yet there is a limitation defined by the number of bits available for the representation—the word size.

For any whole number value, whether integer/signed (positive or negative) or cardinal/unsigned/all-positive (only positive), the word size limits the range of values that can be stored.
Consider the following examples (as practise, determine the values in decimal),
ex: (cardinal; 8-bit word, all-positive)


1111 11112 (largest)

________10

.

.

.


0000 00012 (smallest)

________10


0000 00002 (zero)

ex: (integer; 8-bit word, 2's comp. negation)


0111 11112 (largest positive)
________10

.

.

.


0000 00012 (smallest positive)
________10


0000 00002 (zero)


1111 11112 (smallest negative)
________10

.

.

.


1000 00002 (largest negative)
________10

In both cases the count of values represented (i.e., the number of numbers) is based strictly on the word size:
8-bits => 28 = 256 values (this includes zero (0) ).  

A nice "rule of thumb" for establish the range of a binary number, regardless of the word size,

(all-positive):
111—111 (largest)



…

    

000—000 (smallest)

(2's comp.):
011—111 (largest pos)



…    



000—001 (smallest pos)

000—000 (zero)

111—111 (smallest neg)



…    



100—000 (largest neg)

[and the largest negative is always:  –(largest positive+1) ]

In programming, changing a variable from an 8-bit data type (char in C++, or byte in VB) to a 16-bit data type (long in C++, or integer in VB) allows the variable to store values of a much larger range.

If data types with wider word sizes represent better, larger ranges, why are so many data types used?
What is the disadvantage of using data types that are too large?
The range of possible values based on the word size is not only an issue with integer representations.  Fractional representations (fixed- and floating-point; seen in the next lecture) are also constrained by the word size used to define the given data type.

Following lists are of data types in C++ and VB.  Examine the word sizes for each type and ranges of possible values.

C++ (32-bit—Unix, Linux, Windows) data types, word sizes, and ranges
	PRIVATE
Type
	bits (bytes)
	Range

	unsigned char
	8 (1 byte)
	0 to 255  (ASCII)

	char
	8 (1 byte)
	-128 to 127  (ASCII)

	short int
	16 (2 bytes)
	-32,768 to 32,767

	unsigned int
	32 (4 bytes)
	0 to 4,294,967,295

	int
	32 (4 bytes)
	-2,147,483,648 to 2,147,483,647

	unsigned long
	32 (4 bytes)
	0 to 4,294,967,295

	enum
	32 (4 bytes)
	-2,147,483,648 to 2,147,483,647

	long
	32 (4 bytes)
	-2,147,483,648 to 2,147,483,647

	float
	32 (4 bytes)
	3.4*10-38 to 3.4*1038

	double
	64 (8 bytes)
	1.7*10-308 to 1.7*10308

	long double
	80 (10 bytes)
	3.4*10-4932 to 1.1*104932


Visual Basic (32-bit—Windows) data types, word sizes, and ranges
	PRIVATE
Type
	bits (bytes)
	Range

	Byte
	8 (1 byte)
	0 to 255 (ASCII)

	Boolean
	16 (2 byte)
	True or False

	Integer
	16 (2 bytes)
	-32,768 to 32,767

	Long
	32 (4 bytes)
	-2,147,483,648 to 2,147,483,647

	Singe Positive
	32 (4 bytes)
	1.40129*10-45 to 3.402823*10 38

	Single Negative
	32 (4 bytes)
	-3.402823*10 38 to –1.40129*10-45

	Object
	32 (4 bytes)
	a memory reference address to object

	Double Positive
	64 (8 bytes)
	4.94065645841247*10-24 to 1.79769313486232*10308

	Double Negative
	64 (8 bytes)
	-1.79769313486232*10308 to ‑4.94065645841247*10-24

	Currency
	64 (8 bytes)
	-922337203685477.5808 to 922337203685466.5807

	Date
	64 (8 bytes)
	Jan 1, 100 to Dec 31, 9999

	String
	10 bytes + string length
	0 to 2 billion characters

	User-Defined
	??
	size is the sum of all data types encapsulated in the new type

	Variant
	Date, Time, Floating Point, or String
	16 to 22 bytes in length minimum; ranges in size


Numeric Cycling

As described above, in binary calculations, the word size limits the range of values by constraining the bit-width of every number.  For example, this means that in an addition calculation, both operands (the original values) and the result must all be of the same word size.  If the result of a calculation exceeds the word size, the extra significant bit (left-most) is lost.  

This situation leads to an interesting phenomenon in binary representation called a numeric cycling, such that it seems as though the number series never ends (although it should because of word size). but repeats over and over again when repeated addition or subtraction operations are performed.

Note: A numeric “cycle” exists only with 1's complement and 2's complement.  Sign magnitude does not describe a sequential transition from negative to positive, or positive to negative.
Consider the numeric series of a 4-bit word, all-positive,

        11112   1510    largest positive

        1110    14

        1101    13

        1100    12

        1011    11

        1010    10

        1001     9

        1000     8     

        0111     7     

        0110     6

        0101     5

        0100     4

        0011     3

        0010     2

        0001     1     smallest positive

        0000     0     zero

And the same 4-bit word size but under 2's complement, 

        01112    710    largest positive

        0110     6

        0101     5

        0100     4

        0011     3

        0010     2

        0001     1     smallest positive

        0000     0     zero

        1111    -1     smallest negative

        1110    -2

        1101    -3

        1100    -4

        1011    -5

        1010    -6

        1001    -7

        1000    -8     largest negative

The cycle in both cases is apparent when attempting to "go beyond" either the top or bottom of each range.  This attempt, and failure, is called an "overflow error" (see below).
Using the 4-bit words above, consider calculations in decimal and similar calculations in binary,

ex: (1) with 4-bit word, 2's complement 

     7            0111

   + 110        + 00012

   ----           ----

     810          10002  = -810   so 7+1=-8, a cycle from top to bottom

ex: (2) with 4-bit word, 2's complement

    -8            1000

   +-110        + 11112

   ----           ----

    -910         101112  = 01112 = 710   so -8-1=7, cycle from bottom to top

In the next examples, although "all-positive" can not store negative numbers, the CPU performs 2's comp if a negative value is used or subtraction is attempted; but clearly, with all-positive the final result can never be negative.

ex: (3) with 4-bit word, all-positive

     15            1111

   +  110        + 00012

    ----           ----

     1610         100002  = 010   so 15+1=0, a cycle from top to bottom

ex: (4) with 4-bit word, 2's complement

     0            0000

   +-110        + 11112

   ----           ----

    -110          11112  = 11112 = 1510   so 0-1=15, a cycle from bottom to top

Notice in examples (2) and (3), the "extra bit" must be discarded because of the word size limitation (overflow).

Overflow 

"Overflow errors" are the result of a calculation producing a result that exceeds the word size and can not be stored (represented) correctly.  Once an overflow error occurs there is no way it can be corrected; further, there is no reason to attempt a correction—the result exceeds the word size, and the word size can not be changed in mid-calculation. 

A little forethought on the part of the programmer/designer can reduce the possibility of errors by selecting data types that correctly accommodate the values to be stored.  But this is not complete prevention, so algorithms must be included to detect overflow errors.

Most (if not all) programming languages include such algorithms in programs when they are compiled from high-level code (C++, Java, Pascal, VB, COBOL, etc.) to machine-language (language of the CPU). Modern CPUs also have routines available within the "math co-processor" chip for overflow detection, but the currently running program must explicitly call these routines during a calculation. 

Consider how an overflow error can be detected at the completion of a calculation?
(Hint: for "all-positive," consider the magnitude of the value.  For "2's comp," consider the sign of the result.)
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