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COMP253 — Lecture 5: Word Sizes and Ranges 

Ranges 
At this point it should be clear that the binary number system can represent any whole-number (integer) value 

possible by the decimal number system, yet there is a limitation defined by the number of bits available for the 
representation—the word size. 

For any whole number value, whether integer/signed (positive or negative) or cardinal/unsigned/all-positive (only 
positive), the word size limits the range of values that can be stored. 

Consider the following examples (as practise, determine the values in decimal), 

ex: (cardinal; 8-bit word, all-positive) 

 1111 11112 (largest)  ________10 
 . 

. 

. 
 0000 00012 (smallest)  ________10 
 0000 00002 (zero) 
 

ex: (integer; 8-bit word, 2's comp. negation) 

 0111 11112 (largest positive) ________10 
 . 

. 

. 
 0000 00012 (smallest positive) ________10 
 0000 00002 (zero) 
 1111 11112 (smallest negative) ________10 
 . 

. 

. 
 1000 00002 (largest negative) ________10 
 

In both cases the count of values represented (i.e., the number of numbers) is based strictly on the word size: 
8-bits => 28 = 256 values (this includes zero (0) ).   

A nice "rule of thumb" for establish the range of a binary number, regardless of the word size , 

(all-positive): 111—111 (largest) 
  … 
      000—000 (smallest) 

 
(2's comp.): 011—111 (largest pos) 
  …       

000—001 (smallest pos) 
000—000 (zero ) 
111—111 (smallest neg) 

  …       
100—000 (largest neg) 
[and the largest negative is always:  –(largest positive+1) ] 
 
 

In programming, changing a variable from an 8-bit data type (char in C++, or byte in VB) to a 16-bit data type 
(long in C++, or integer in VB) allows the variable to store values of a much larger range. 

If data types with wider word sizes represent better, larger ranges, why are so many data types used? 
What is the disadvantage of using data types that are too large? 
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The range of possible values based on the word size is not only an issue with integer representations.  Fractional 
representations (fixed- and floating-point; seen in the next lecture) are also constrained by the word size used to 

define the given data type. 

Following lists are of data types in C++ and VB.  Examine the word sizes for each type and ranges of possible 
values. 

C++ (32-bit—Unix, Linux, Windows) data types, word sizes, and ranges 

Type bits (bytes) Range 

unsigned char 8 (1 byte) 0 to 255  (ASCII) 

char 8 (1 byte) -128 to 127  (ASCII) 

short int 16 (2 bytes) -32,768 to 32,767 

unsigned int 32 (4 bytes) 0 to 4,294,967,295 

int 32 (4 bytes) -2,147,483,648 to 2,147,483,647 

unsigned long 32 (4 bytes) 0 to 4,294,967,295 

enum 32 (4 bytes) -2,147,483,648 to 2,147,483,647 

long 32 (4 bytes) -2,147,483,648 to 2,147,483,647 

float 32 (4 bytes) 3.4*10-38 to 3.4*1038 

double 64 (8 bytes) 1.7*10-308 to 1.7*10308 

long double 80 (10 bytes) 3.4*10-4932  to 1.1*104932  

 

Visual Basic (32-bit—Windows) data types, word sizes, and ranges 
Type bits (bytes) Range 

Byte 8 (1 byte) 0 to 255 (ASCII) 

Boolean 16 (2 byte) True or False 

Integer 16 (2 bytes) -32,768 to 32,767 

Long 32 (4 bytes) -2,147,483,648 to 2,147,483,647 

Singe Positive 32 (4 bytes) 1.40129*10-45 to 3.402823*10 38 

Single Negative 32 (4 bytes) -3.402823*10 38 to –1.40129*10-45 

Object 32 (4 bytes) a memory reference address to object 

Double Positive 64 (8 bytes) 4.94065645841247*10-24 to 1.79769313486232*10308 

Double Negative 64 (8 bytes) -1.79769313486232*10308 to -4.94065645841247*10-24 

Currency 64 (8 bytes) -922337203685477.5808 to 922337203685466.5807 

Date 64 (8 bytes) Jan 1, 100 to Dec 31, 9999 

String 10 bytes + string length 0 to 2 billion characters 

User-Defined ?? size is the sum of all data types encapsulated in the new type 

Variant Date, Time, Floating 
Point, or String 

16 to 22 bytes in length minimum; ranges in size 
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Numeric Cycling 

As described above, in binary calculations, the word size limits the range of values by constraining the bit-width of 

every number.  For example, this means that in an addition calculation, both operands (the original values) and the 
result must all be of the same word size.  If the result of a calculation exceeds the word size, the extra significant bit  

(left-most) is lost.   

This situation leads to an interesting phenomenon in binary representation called a numeric cycling, such that it 

seems as though the number series never ends (although it should because of word size). but repeats over and over 
again when repeated addition  or subtraction operations are performed. 

Note: A numeric “cycle” exists only with 1's complement and 2's complement.  Sign magnitude does not 

describe a sequential transition from negative to positive, or positive to negative. 

 

Consider the numeric series of a 4-bit word, all-positive, 

        11112   1510    largest positive 
        1110    14 
        1101    13 
        1100    12 
        1011    11 
        1010    10 
        1001     9 
        1000     8      
        0111     7      
        0110     6 
        0101     5 
        0100     4 
        0011     3 
        0010     2 
        0001     1     smallest positive 
        0000     0     zero 
 

And the same 4-bit word size but under 2's complement,  

        01112    710    largest positive 
        0110     6 
        0101     5 
        0100     4 
        0011     3 
        0010     2 
        0001     1     smallest positive 
        0000     0     zero 
        1111    -1     smallest negative 
        1110    -2 
        1101    -3 
        1100    -4 
        1011    -5 
        1010    -6 
        1001    -7 
        1000    -8     largest negative 
 

The cycle in both cases is apparent when attempting to "go beyond" either the top or bottom of each range.  This 
attempt, and failure, is called an "overflow error" (see below). 
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Using the 4-bit words above, consider calculations in decimal and similar calculations in binary, 

ex: (1) with 4-bit word, 2's complement  

     7            0111 
   + 110        + 00012 
   ----           ---- 
     810          10002  = -810   so 7+1=-8, a cycle from top to bottom 
ex: (2) with 4-bit word, 2's complement 

    -8            1000 
   +-110        + 11112 
   ----           ---- 
    -910         101112  = 01112 = 710   so -8-1=7, cycle from bottom to top 
 

In the next examples, although "all-positive" can not store negative numbers, the CPU performs 2's comp if a 
negative value is used or subtraction is attempted; but clearly, with all-positive the final result can never be negative. 

ex: (3) with 4-bit word, all-positive 

     15            1111 
   +  110        + 00012 
    ----           ---- 
     1610         100002  = 010   so 15+1=0, a cycle from top to bottom 
 

ex: (4) with 4-bit word, 2's comp lement 

     0            0000 
   +-110        + 11112 
   ----           ---- 
    -110          11112  = 11112 = 1510   so 0-1=15, a cycle from bottom to top 
 

Notice in examples (2) and (3), the "extra bit" must be discarded because of the word size limitation (overflow). 

Overflow  

"Overflow errors" are the result of a calculation producing a result that exceeds the word size and can not be stored 
(represented) correctly.  Once an overflow error occurs there is no way it can be corrected; further, there is no reason 

to attempt a correction—the result exceeds the word size, and the word size can not be changed in mid -calculation.  

A little forethought on the part of the programmer/designer can reduce the possibility of errors by selecting data 

types that correctly accommodate the values to be stored.  But this is not complete prevention, so algorithms must be 
included to detect overflow errors. 

Most (if not all) programming languages include such algorithms in programs when they are compiled from high-
level code (C++, Java, Pascal, VB, COBOL, etc.) to machine-language (language of the CPU). Modern CPUs also 

have routines available within the "math co-processor" chip for overflow detection, but the currently running 
program must explicitly call these routines during a calculation.  

 

Consider how an overflow error can be detected at the completion of a calculation? 
(Hint: for "all-positive," consider the magnitude of the value.  For "2's comp," consider the sign of the result.)  

 


