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COMP253 — Lecture 8: Discussion of the "CPU" 
 

(pages 184-200 (4th), 115-131 (3rd)) 

The phrase "Central Processing Unit" clearly describes the responsibility of the CPU for processing all data within 
the computer system.  In reality, not all data is processed or passes through the CPU, but it is the driving force 

behind all activity observed by the user.  The CPU may not actually write to the hard disk, or produce the image on 
the display screen, but it is the component that processed and provided the data that eventually was given to those 
devices. 

The CPU is the core of the entire system, so fundamental that its qualities are one of the key measurements for 

judging the performance potential of the entire system—the system is only as good as the CPU controlling it  
(if you ignore disk speed, video throughput, bus transfer time, and memory access speed). 

As with all other aspects associated with computers, technology has progressed very quickly since the first 
microprocessors design by Intel in the late 1970's (see "History of Intel Processors" at the end). 

Sections of CPU 

 
 
 
 
 
 
 
 
 
 
 
 
 
The diagram above describes the CPU as being composed of separate sections, or components.  Each component 
serves a special purpose, with no one component being more important than another.  In a carefully choreographed 
sequence, binary words flow in and out of the CPU, changing paths depending on whether the words are instruction 

or data (for processing). 
 

The CPU's deepest components (having existed from the first CPU designs), 

− Control Unit (CU) 

− co-ordinates the flow of data through the ALU and Registers 

− Arithmetic-Logic Unit (ALU) 

− performs arithmetic (addition, subtraction) and logic (greater than, less than, equal to, left/right-shift) 
operations on data stored in CPU registers 

− Registers 

− local memory used by the ALU and CU 

− for CU as input and output data buffers, and for ALU as operand and result storage 

− registers are sometimes incorrectly classified as part of the L1 Cache in the CPU; registers limited, special 
"calculation processing" memory, whereas Cache is used a buffer for the entire CPU 

 
The supporting components (servicing the functionality of the CPU towards the main bus and rest of the system), 

− Bus Unit (BU)  

− controls the interaction of the CPU with the internal system bus (ISA, PCI) and memory bus 

− the Prefetch Queue stores the next instruction that is planned for execution (using the idea of Cache 
Memory, this queue may store more than one instruction) 
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− Execution Unit (EU) 

− responsible for data processing (adding, comparing, etc.) through the Control Unit (CU) , Registers, and 
Arithmetic-Logic Unit (ALU); some instructions may be given to the Floating-Point Unit (FPU) 

− [in modern and capable CPUs] also determines which instructions can be executed in parallel, or "out-of-
sequence" 

− Instruction Unit (IU) 

− the identification of current instruction in Prefetch Queue (removes it from queue) and decodes it for the 
Execution Unit (EU)   

− uses the Instruction Lookup Table to translate (decode) the Machine Language Instruction (used outside the 
CPU) to a Microcode Instruction  (used within the CPU)  {very simple instructions are the same} 

− Addressing Unit (AU) 

− controls the addressing of memory (Cache, RAM) and I/O devices for the Bus Unit (BU) 

− also includes a Memory Management Unit (MMU)  to co-ordinate the proper address of paged memory 
(through the Segmentation Unit (SU) and Page Unit (PU)) 

− the width (in bits) of the AU defines (and limits) the maximum potentially addressable memory  

− Floating-Point Unit (FPU) or Numeric Processing Unit  (NPU) or Math Co-processor 

− originally a separate processor that worked via control from the Execution Unit (EU)  

− controls any advanced floating-point operations and higher-level mathematics that are not performed by the 
Arithmetic-Logic Unit (ALU)  

− instructions for the FPU are redirected by the Execution Unit (EU)  

The Execution Cycle 

The components described above work together as an assembly line to input, decode, process, and output the results 

of the instructions a program (usually, only the BIOS and Operating System). 

The CPU performs the instructions of a program in order, completing each instruction, storing the result, then 
repeating with the next instruction.  And there is no end to the series of instructions—the CPU always has 
something to do. 

This sequence is called the processing (or execution) cycle .  A very simplified breakdown of the cycle, 

1. Read the next instruction in the queue (current instruction), point to next  instruction in the queue. 

2. Decode the current instruction, determine nature of instruction (does it require data from memory?) 

3. Load any required data from memory and store in Registers (this might take two or more clock cycles) 

4. Execute instruction 

5. Store any result in Registers and/or write to memory (if needed) 

6. Go back to step 1. 
 

Obviously, a lot more happens within the CPU, and in the entire computer system, during a single execution cycle 
such as, 

− interrupt request handling for hardware and software 

− reading and writing to L1 (level 1-internal) and L2 (level 2-external) Cache 

− pre-processing of instructions, 

− to pre-load data, determine parallel instruction execution, and determine "out-of-order" (out-of-
sequence) instruction execution 

− floating-point instructions 

− extended instructions (MMX (multimedia extensions), 3Dnow!, SSE (streaming SIMD Extension) 

 

Further, some instructions may warrant conversion from CISC to RISC, which makes the interpretation of the 

instruction longer, but the overall instruction execution much faster (see below, "RISC and CISC"). 
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Machine Language, Assembly Language 

Most programmers are familiar with high-level languages, since 

these are languages they use on a regular basis (such as, C/C++, 
VB, Java, COBOL, FORTRAN, and Pascal). 

Programs written in these languages must be compiled or 
translated into machine language  in order for the CPU to 

understand and perform them.  But the level diagram seems to 
indicate a language in-between: assembly language . 

For many computer-literate users, machine language and 
assembly language are one-in-the-same, using the terms 

interchangeably.  Although both languages are semantically 
similar, the programming format and approach are different. 

Machine Language 

The binary code used to identify specific commands for the CPU based on the Instruction Set (each CPU, or 
compatible group of CPUs, has its own machine language).  Since coding directly in binary is not possible, or 
desired, programmers use either hexadecimal or octal (and a translation tool) to compose programs. 

The main disadvantage of machine language is that each CPU instruction and data is a binary code (as hex or octal), 
that must be referenced in a programming manual, or just remembered. 

Assembly Language 

To ease the burden on programmers having to remember (or reference) binary code, each machine language 
instruction is given a mnemonic, or "name" (in general, a mnemonic is anything used in place of an object, to help 

remember that object).  This allows programs to be "assembled" from symbols, and although the number of 
instructions is not reduced by using Assembly Language, programs can be written using more "human-language" 

codes .  The advantage is programs are readable. 

The disadvantage of Assembly Language is that a compiler is required to transform the mnemonic-written code into 

machine code (binary) for the CPU.  Below is a sample of assembly language. 

 
;this is a simple program which displays "Hello World!" 
;on the screen.  
 
.model small  
.stack  
 
.data  
Message db "Hello World!$"   ;message to be display  
 
.code  
mov dx,OFFSET Message        ;offset of Message is in DX  
mov ax,SEG Message           ;segment of Message is in AX  
mov ds,ax                    ;DS:DX points to string  
mov ah,9                     ;DOS function 9 - display string  
int 21h                      ;call DOS service software interrupt 
mov ax,4c00h                 ;return to DOS  
int 21h  
END start                    ;end here  

 

(Note: The DOS program execution and debugging tool (the DEBUG utility) is capable of representing binary code 
machine language programs in assembly (called "unassembly"), as well as allowing machine language 

programming in hex.  DEBUG does not include an assembly language compiler, but such compilers are available 
freely on the Internet for almost all platforms (CPUs and operating systems).) 
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RISC and CISC 
(page 194 (4th), 125 (3rd)) 

The language of a CPU is defined by its Instruction Set (IS) , which defines all possible instructions. 

Consider the IS as a "closed vocabulary" (no new words are possible or can be added), and the Instruction Lookup 
Table (see Instruction Unit (IU)  above) represents the CPU's vocabulary: its dictionary. 

 
CISC (Complex Instruction Set Computer) 

− the instruction set is very long, accommodating many similar but different instructions 

− user programs (in Machine Language) are short because they are composed of comprehensive 
instructions, very exact instructions (rather than a large numb er of small, repeated instructions) 

− very efficient for memory usage, since programs are short (few instructions required) 
not efficient for the CPU since it must look through a very long lookup table to find each instruction 

− good for system designers writing programs on limited-memory computer, single -task systems  
(like microcontroller circuits and personal computers) 

 
RISC (Reduced Instruction Set Computer) 

− the instruction set is very small, with simple  instructions (simpler than CISC) 

− user programs are longer than CISC, since more instructions are required, but the programs are 
composed of short, quickly decoded instructions 

− not efficient for memory, since programs are long, but efficient for CPU since the lookup table is very 
short, and instructions can be found quickly 

− very popular now that program and data storage use multi-megabyte RAM and disks 

− for CPU and OS designers, less machine language instructions implies less possible errors; which 
implies the possibility of producing more stable software 

 
The RISC approach allows for the design of processors that may have a low clock cycle, but are very efficient and 
run very cool (less instructionsàless circuitryàless heat).   

SUN Microsystems  has been using RISC technology in their SPARC CPUs from the beginning.  And with the 

performance and reliability of Motorola's and IBM's RISC-based PowerPC CPUs in Apple's computers, Intel and 
AMD have decided to incorporate RISC designs in their CISC CPUs. 

Note:  Both Intel and AMD have stated that new CPU designs will be RISC-based, foregoing compatibility with 

older CISC CPUs or forcing Operating Systems companies to include CPU-emulators for legacy support—has this 
happened? 

Too much software (applications and operating systems) has been designed for CISC-based processors, and the 

shift will be extremely costly for the organisations involved to make such an investment. 

One possible future has been offered by Transmeta and its Crusoe CPUs.  The CPUs are RISC at the low-level, but 

provide a real-time CISC emulation.  This means that a Crusoe CPU runs CISC instructions by translating them to 
RISC before execution.  It may seem timely and complicated, and it is, but the processors require little energy and 

generate little heat—a perfect option in some cases. 
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History of Intel Processors 
 
Processor 

Reg. 
width 

Addr. bus 
width 

Data bus 
width 

Address 
space 

Clock speed 
(MHz) 

 
Year 

 
# of transistors 

8088 16 bit 20 bit 8 bit 1 MB 4.7  to 8  1979 29,000 

8086 16 bit 20 bit 16 bit 1 MB 4.7 to 10 1978 29,000 

80188 * 16 bit 20 bit 8 bit 1 MB 5 to 16 1982 n/a 

80186 * 16 bit 20 bit 16 bit 1 MB 5 to 16 1982 n/a 

80286 16 bit 24 bit 16 bit 16 MB 12 to 25 1982 134,000 

386DX, DX4 32 bit 32 bit 16 bit 4 GB 16 to 66 1985 275,000 

486DX, DX4 32 bit 32 bit 32 bit 4 GB 25 to 100 1989 .8 to 1.2 million 

Pentium  32 bit 32 bit 64 bit 4 GB 60 to 66 1993 3.1 million 

Pentium MMX 32 bit 32 bit 64 bit 4 GB 75 to 233 1994 4.5 million 

Pentium Pro 32 bit 36 bit 64 bit 64 GB ~ 150 to 200 1995 5.5 million 

Pentium II 32 bit 36 bit 64 bit 64 GB ~ 233 to 400 1997 7.5 million 

Pentium III 32 bit 36 bit 64 bit 64 GB ~ 500 to 1000 1999 24 million 

Pentium IV 32 bit 36 bit 64 bit 64 GB 1.5 to 2.8 GHz 2000 42 million 

* special processor used in advanced controller circuits 

Newer processors are now available from Intel and AMD that surpass the Pentium IV, with higher processing 

(clock) speeds and more potentially addressable, 

� the Intel Itanium has 64-bit register and data bus widths, and 44-bit address bus. 

� the AMD Athlon 64 has 64-bit register and data bus widths, and 52-bit address bus . 

 

There are a lot of resources available on the Internet for the history and aspects of the important CPUs. 

A good starting point is: http://www3.sk.sympatico.ca/jbayko/cpu.html  

Along with Intel:  http://www.intel.com/intel/intelis/museum/exhibit/hist_micro/hof/tspecs.htm 


